CLIENTES - ACCESO PRIVADO    Suscribirse a nuestras novedades (RSS)        
 
BÚSQUEDA:        Buscar
Libros nacionales y extranjeros para bibliotecas,
 
 
Búsqueda avanzada
Libros nacionales y extranjeros para bibliotecas, escuelas, universidades, librerías
     
         
  Arte
Astronomía
Botánica
Ciencia y conocimiento
Ciencias aplicadas / tecnología
Ciencias biológicas
Ciencias sociales
Economía
Filosofía
Física
Generalidades
Geografía
Geología
Historia
Infantil / juvenil
Informática
Ingeniería
Lingüística / filología
Literatura
Matemáticas
Material complementario
Medicina
Ocio
Paleontología / fósiles
Química
Religión y teología
Zoología
   
   
 
   
Los Andes Libros s.l. + 34 935 00 39 13
C/ Andalusia, 3 Local 5 - 08014 Barcelona
 
Flash Chemistry : Fast Organic Synthesis in Microsystems
Yoshida, Jun-Ichi
Flash Chemistry : Fast Organic Synthesis in Microsystems
ean9780470035863
temáticaQUÍMICA FÍSICA
año Publicación2008
idiomaESPAÑOL
editorialWILEY
páginas272
formatoCARTONÉ


99,90 €


   PEDIR
 
NOVEDAD
 
Últimas novedades
química física
Synopsis
Have you ever wished you could speed up your organic syntheses without losing control of the reaction? Flash Chemistry is a new concept which offers an integrated scheme for fast, controlled organic synthesis. It brings together the generation of highly reactive species and their reactions in microsystems to enable highly controlled organic syntheses on a preparative scale in timescales of a few seconds or less. Flash Chemistry - Fast Chemical Reactions in Microsystems is the first dedicated book to describe this exciting new technique, and is an essential introduction for anyone working in organic synthesis, process chemistry, chemical engineering and physical organic chemistry concerned with fundamental aspects of chemical reactions and synthesis and the production of organic compounds.
indíce
Preface.
1. Introduction.

1.1 Flask Chemistry.

1.2 Flash Chemistry.

1.3 Flask Chemistry or Flash Chemistry.

2. The Background to Flash Chemistry.

2.1 How do Chemical Reactions Take Place?

3. What is Flash Chemistry?

4. Why is Flash Chemistry Needed?

4.1 Chemical Reaction, an Extremely Fast Process at Molecular Level.

4.2 Rapid Construction of Chemical Libraries.

4.3 Rapid Synthesis of Radioactive Position Emission Tomography Probes.

4.4 On-Demand Rapid Synthesis in Industry.

4.5 Conclusions.

5. Methods of Activating Molecules.

5.1 Thermal Activation of Organic Molecules.

5.2 Photochemical Activation.

5.3 Electrochemical Activation.

5.4 Chemical Activation.

5.5 Accumulation of Reactive Species.

5.6 Continuous Generation of Reactive Species in a Flow System.

5.7 Interconversion Between Reactive Species.

5.8 Conclusions.

6. Control of Extremely Fast Reactions.

6.1 Mixing.

6.2 Temperature Control.

6.3 Residence Time Control.

6.4 Conclusions.

7. Microfluidic Devices and Microflow Systems.

7.1 Brief History.

7.2 Characteristic Features of Microflow Systems.

7.3 Microstructured Fluidic Devices.

7.4 Conclusions.

8. Applications of Flash Chemistry in Organic Synthesis.

8.1 Highly Exothermic Reactions that are Difficult to Control in Macrobatch Reactors.

8.2 Reactions in Which a Reactive Intermediate Easily Decomposes in Macrobatch Reactors.

8.3 Reactions with Products of Which Easily Decompose in Macrobatch Reactors.

8.4 Reactions in Which Undesired By-products are Produced in the Subsequent Reactions In Macrobatch Reactors.

8.5 Reactions That Can Be Accelerated Using Microflow Systems.

8.6 Conclusions.

9. Polymer Synthesis Based on Flash Chemistry.

9.1 Introduction.

9.2 Chain-Growth Polymerization and Step-Growth Polymerization.

9.3 Molecular Weight and Molecular-Weight Distribution.

9.4 Cationic Polymerization.

9.5 Free-Radical Polymerization.

9.6 Conclusions.

10. Industrial Applications of Flash Chemistry.

10.1 Synthesis of Diarylethene as Photochromic Compound (Micrometer-Size Single-Channel Reactor).

10.2 Synthesis of Pharmaceutically Interesting Spiro Lactone Fragment Of Nueropeptide Y (Millimeter-Size Channel-Single Reactor).

10.3 Grignard Exchange Process (Internal numbering-up).

10.4 Radical Polymerization Process (Numbering-up).

10.5 Other examples of Industrial Applications of Flash Chemistry .

10.6 Flash Chemistry as a Powerful Means of Sustainable Chemical Synthesis.

10.7 Conclusions.

11. Outlook of Flash Chemistry.

Index.

Finançat per UE