CLIENTES - ACCESO PRIVADO    Suscribirse a nuestras novedades (RSS)        
 
BÚSQUEDA:        Buscar
Libros nacionales y extranjeros para bibliotecas,
 
 
Búsqueda avanzada
Libros nacionales y extranjeros para bibliotecas, escuelas, universidades, librerías
     
         
  Arte
Astronomía
Botánica
Ciencia y conocimiento
Ciencias aplicadas / tecnología
Ciencias biológicas
Ciencias sociales
Economía
Filosofía
Física
Generalidades
Geografía
Geología
Historia
Infantil / juvenil
Informática
Ingeniería
Lingüística / filología
Literatura
Matemáticas
Material complementario
Medicina
Ocio
Paleontología / fósiles
Química
Religión y teología
Zoología
   
   
 
   
Los Andes Libros s.l. + 34 935 00 39 13
C/ Andalusia, 3 Local 5 - 08014 Barcelona
 
Handbook of Fluorescence Spectroscopy and Imaging: From Ensemble to Single Molecules
Markus Sauer, Johan Hofkens, Jörg Enderl
Handbook of Fluorescence Spectroscopy and Imaging: From Ensemble to Single Molecules
ean9783527316694
temáticaQUÍMICA GENERAL
año Publicación2011
idiomaINGLÉS
editorialWILEY
formatoCARTONÉ


108,90 €


   PEDIR
 
NOVEDAD
 
Últimas novedades
química general
Providing much-needed information on fluorescence spectroscopy and microscopy, this ready reference covers detection techniques, data registration, and the use of spectroscopic tools, as well as new techniques for improving the resolution of optical microscopy below the resolution gap.
Starting with the basic principles, the book goes on to treat fluorophores and labeling, single-molecule fluorescence spectroscopy and enzymatics, as well as excited state energy transfer, and super-resolution fluorescence imaging.
Examples show how each technique can help in obtaining detailed and refined information from individual molecular systems.

indíce
Preface.
1 Basic Principles of Fluorescence Spectroscopy.

1.1 Absorption and Emission of Light.

1.2 Spectroscopic Transition Strengths.

1.3 Lambert–Beer Law and Absorption Spectroscopy.

1.4 Fluorophore Dimerization and Isosbestic Points.

1.5 Franck–Condon Principle.

1.6 Temperature Effects on Absorption and Emission Spectra.

1.7 Fluorescence and Competing Processes.

1.8 Stokes Shift, Solvent Relaxation, and Solvatochroism.

1.9 Fluorescence Quantum Yield and Lifetime.

1.10 Fluorescence Anisotropy.

References.

2 Fluorophores and Fluorescent Labels.

2.1 Natural Fluorophores.

2.2 Organic Fluorophores.

2.3 Different Fluorophore Classes.

2.4 Multichromophoric Labels.

2.5 Nanocrystals.

References.

3 Fluorophore Labeling for Single-Molecule Fluorescence Spectroscopy (SMFS).

3.1 In Vitro Fluorescence Labeling.

3.2 Fluorescence Labeling in Living Cells.

References.

4 Fluorophore Selection for Single-Molecule Fluorescence Spectroscopy (SMFS) and Photobleaching Pathways.

References.

5 Fluorescence Correlation Spectroscopy.

5.1 Introduction.

5.2 Optical Set-Up.

5.3 Data Acquisition and Evaluation.

5.4 Milliseconds to Seconds: Diffusion and Concentration.

5.5 Nanoseconds to Microseconds: Photophysics, Conformational Fluctuations, Binding Dynamics.

5.6 Picoseconds to Nanoseconds: Rotational Diffusion and Fluorescence Antibunching.

5.7 Fluorescence Lifetime Correlation Spectroscopy.

5.8 Conclusion.

References.

6 Excited State Energy Transfer.

6.1 Introduction.

6.2 Theory of (Förster) Energy Transfer.

6.3 Experimental Approach for Single-Pair FRET-Experiments.

6.4 Examples and Applications of FRET.

7 Photoinduced Electron Transfer (PET) Reactions.

7.1 Fluorescence Quenching by PET.

7.2 Single-Molecule Fluorescence Spectroscopy to Study PET.

7.3 Single-Molecule Sensitive Fluorescence Sensors Based on PET.

7.4 PET Reporter System.

7.5 Monitoring Conformational Dynamics and Protein Folding by PET.

7.6 Biological and Diagnostic Applications.

References.

8 Super-Resolution Fluorescence Imaging.

8.1 Diffraction Barrier of Optical Microscopy.

8.2 Multi-Photon and Structured Illumination Microscopy.

8.3 Stimulated Emission Depletion.

8.4 Single-Molecule Based Photoswitching Microscopy.

8.5 Background and Principles of Single-Molecule Based Photoswitching Microscopy Methods.

8.6 Temporal Resolution of Super-Resolution Imaging Methods.

References.

9 Single-Molecule Enzymatics.

9.1 Introduction: Why Study Enzymes on a Single-Molecule Level?

9.2 Biochemical Principles of Enzymatic Activity: the Michaelis–Menten Model.

9.3 ‘‘Looking’’ at Individual Enzymes.

9.4 Data Analysis of Fluorescence Intensity Time Traces of Single-Turnover Experiments.

9.5 Conclusions.

References.

Index.
Finançat per UE