CLIENTES - ACCESO PRIVADO    Suscribirse a nuestras novedades (RSS)        
 
BÚSQUEDA:        Buscar
Libros nacionales y extranjeros para bibliotecas,
 
 
Búsqueda avanzada
Libros nacionales y extranjeros para bibliotecas, escuelas, universidades, librerías
     
         
  Arte
Astronomía
Botánica
Ciencia y conocimiento
Ciencias aplicadas / tecnología
Ciencias biológicas
Ciencias sociales
Economía
Filosofía
Física
Generalidades
Geografía
Geología
Historia
Infantil / juvenil
Informática
Ingeniería
Lingüística / filología
Literatura
Matemáticas
Material complementario
Medicina
Ocio
Paleontología / fósiles
Química
Religión y teología
Zoología
   
   
 
   
Los Andes Libros s.l. + 34 935 00 39 13
C/ Andalusia, 3 Local 5 - 08014 Barcelona
 
Optical Properties of Nanoparticle Systems: Mie and Beyond
Michael Quinten
Optical Properties of Nanoparticle Systems: Mie and Beyond
ean9783527410439
temáticaINGENIERÍA, NANOTECNOLOGÍA
año Publicación2011
idiomaINGLÉS
editorialWILEY
formatoCARTONÉ


127,05 €


   PEDIR
 
NOVEDAD
 
Últimas novedades
ingeniería
nanotecnología
Unlike other books who concentrate on metallic nanoparticles with sizes less than 100 nm, the author discusses optical properties of particles with (a) larger size and (b) of any material. The intention of this book is to fill the gap in the description of the optical properties of small particles with sizes less than 1000 nm and to provide a comprehensive overview on the spectral behavior of nanoparticulate matter. The author concentrates on the linear optical properties elastic light scattering and absorption of single nanoparticles and on reflectance and transmittance of nanoparticle matter. The optical properties of nanomaterials include elastic light scattering, absorption, reflectance and transmittance, second harmonic generation, nonlinear optical properties, surface enhanced Raman scattering, and more. The catalog of spectra of nanoparticulate matter is completely new.
indíce
1 Introduction.
2 Nanoparticle Systems and Experimental Optical Observables.

2.1 Classifi cation of Nanoparticle Systems.

2.2 Stability of Nanoparticle Systems.

2.3 Extinction, Optical Density, and Scattering.

3 Interaction of Light with Matter – The Optical Material Function.

3.1 Classical Description.

3.2 Quantum Mechanical Concepts.

3.3 Tauc–Lorentz and OJL Models.

3.4 Kramers–Kronig Relations and Penetration Depth.

4 Fundamentals of Light Scattering by an Obstacle.

4.1 Maxwell’s Equations and the Helmholtz Equation.

4.2 Electromagnetic Fields.

4.3 Boundary Conditions.

4.4 Poynting’s Law and Cross-sections.

4.5 Far-Field and Near-Field.

4.6 The Incident Electromagnetic Wave.

4.7 Rayleigh’s Approximation for Small Particles – The Dipole Approximation.

4.8 Rayleigh–Debye–Gans Approximation for Vanishing Optical Contrast.

5 Mie’s Theory for Single Spherical Particles.

5.1 Electromagnetic Fields and Boundary Conditions.

5.2 Cross-sections, Scattering Intensities, and Related Quantities.

5.3 Resonances.

5.4 Optical Contrast.

5.5 Near-Field.

6 Application of Mie’s Theory.

6.1 Drude Metal Particles (Al, Na, K).

6.2 Noble Metal Particles (Cu, Ag, Au).

6.3 Catalyst Metal Particles (Pt, Pd, Rh).

6.4 Magnetic Metal Particles (Fe, Ni, Co).

6.5 Rare Earth Metal Particles (Sc, Y, Er).

6.6 Transition Metal Particles (V, Nb, Ta).

6.7 Summary of Metal Particles.

6.8 Semimetal Particles (TiN, ZrN).

6.9 Semiconductor Particles (Si, SiC, CdTe, ZnSe).

6.10 Carbonaceous Particles.

6.11 Absorbing Oxide Particles (Fe2O3, Cr2O3, Cu2O, CuO).

6.12 Transparent Oxide Particles (SiO2, Al2O3, CeO2, TiO2).

6.13 Particles with Phonon Polaritons (MgO, NaCl, CaF2).

6.14 Miscellaneous Nanoparticles (ITO, LaB6, EuS).

7 Extensions of Mie’s Theory.

7.1 Coated Spheres.

7.2 Supported Nanoparticles.

7.3 Charged Nanoparticles.

7.4 Anisotropic Materials.

7.5 Absorbing Embedding Media.

7.6 Inhomogeneous Incident Waves.

8 Limitations of Mie’s Theory – Size and Quantum Size Effects in Very Small Nanoparticles.

8.1 Boundary Conditions – the Spill-Out Effect.

8.2 Free Path Effect in Nanoparticles.

8.3 Chemical Interface Damping – Dynamic Charge Transfer.

9 Beyond Mie’s Theory I – Nonspherical Particles.

9.1 Spheroids and Ellipsoids.

9.2 Cylinders.

9.3 Cubic Particles.

9.4 Numerical Methods.

9.5 Application of Numerical Methods to Nonspherical Nanoparticles.

10 Beyond Mie’s Theory II – The Generalized Mie Theory.

10.1 Derivation of the Generalized Mie Theory.

10.2 Resonances.

10.3 Common Results.

10.4 Extensions of the Generalized Mie Theory.

11 The Generalized Mie Theory Applied to Different Systems.

11.1 Metal Particles.

11.2 Semimetal and Semiconductor Particles.

11.3 Nonabsorbing Dielectrics.

11.4 Carbonaceous Particles.

11.5 Particles with Phonon Polaritons.

11.6 Miscellaneous Particles.

11.7 Aggregates of Nanoparticles of Different Materials.

11.8 Optical Particle Sizing.

11.9 Stochastically Distributed Spheres.

11.10 Aggregates of Spheres and Numerical Methods.

12 Densely Packed Systems.

12.1 The Two-Flux Theory of Kubelka and Munk.

12.2 Applications of the Kubelka–Munk Theory.

12.3 Improvements of the Kubelka–Munk Theory.

13 Near-Field and SERS.

13.1 Waveguiding Along Particle Chains.

13.2 Scanning Near-Field Optical Microscopy.

13.3 SERS with Aggregates.

14 Effective Medium Theories.

14.1 Theoretical Results for Dielectric Nanoparticle Composites.

14.2 Theoretical Results for Metal Nanoparticle Composites.

14.3 Experimental Examples.

References.

Color Plates.

Index.

Finançat per UE