CLIENTES - ACCESO PRIVADO    Suscribirse a nuestras novedades (RSS)        
 
BÚSQUEDA:        Buscar
Libros nacionales y extranjeros para bibliotecas,
 
 
Búsqueda avanzada
Libros nacionales y extranjeros para bibliotecas, escuelas, universidades, librerías
     
         
  Arte
Astronomía
Botánica
Ciencia y conocimiento
Ciencias aplicadas / tecnología
Ciencias biológicas
Ciencias sociales
Economía
Filosofía
Física
Generalidades
Geografía
Geología
Historia
Infantil / juvenil
Informática
Ingeniería
Lingüística / filología
Literatura
Matemáticas
Material complementario
Medicina
Ocio
Paleontología / fósiles
Química
Religión y teología
Zoología
   
   
 
   
Los Andes Libros s.l. + 34 935 00 39 13
C/ Andalusia, 3 Local 5 - 08014 Barcelona
 
Nonlinear Dynamics with Polymers: Fundamentals, Methods and Applications
John A. Pojman, Qui Tran-Cong-
Nonlinear Dynamics with Polymers: Fundamentals, Methods and Applications
ean9783527325290
temáticaQUÍMICA GENERAL
año Publicación2010
idiomaINGLÉS
editorialWILEY
formatoCARTONÉ


127,05 €


   PEDIR
 
NOVEDAD
 
Últimas novedades
química general
Closing a gap in the literature, this is the first comprehensive handbook on this modern and important polymer topic.
Edited by highly experienced and top scientists in the field, this ready reference covers all aspects, including material science, biopolymers, gels, phase separating systems, frontal polymerization and much more.
The introductory chapter offers the perfect starting point for the non-expert.
indíce
List of Contributors.
1. Introduction (John A. Pojman and Qui Tran-Cong-Miyata).

1.1 Overview.

1.2 What Follows.

1.3 The Future.

2. What Is Nonlinear Dynamics and How Does It Relate to Polymers? (Irving R. Epstein, Hohn A. Pojman, and Qui Tran-Cong-Miyata).

2.1 Introduction.

2.2 Nonlinear Dynamics.

2.3 Some Key Ideas of Nonlinear Chemical Dynamics.

2.4 Polymeric Systems.

2.5 Conclusions.

3. Evolution of Nonlinear Rheology and Network Formation during Thermoplastic Polyyrethane Polymerization and Its Relationship to Reaction Kinetics, Phase Separation, and Mixing (I. Sedat Gunes, Changdo Jung, and Sadhan C. Jana).

3.1 Introduction.

3.2 Brief Overview of Evolution of Nonlinear Rheological Properties during Polymerization.

3.3 Evolution of Nonlinear Rheology and Network Formation during Thermoplastic Polyurethane Polymerization: Effects of Mixer Design, Mixing Polotocol, Catalyst Concentration, and Timescales.

3.4 Conclusions.

4. Frontal Polymerization (John A. Pojman).

4.1 Introduction.

4.2 Applications.

4.3 Motivation for Studying Nonlinear Dynamics with Frontal Polymerization.

4.4 Convective Instabilities.

4.5 Thermal Instabilities.

4.6 Snell’s Law.

4.7 Three-Dimensional Frontal Polymerization.

4.8 Impact on Applications.

4.9 Conclusions.

5. Isothermal Frontal Polymerization (Lydia L. Lewis and Vladimir A. Volpert).

5.1 Introduction.

5.2 Mathematical Models.

5.3 Experimental IFP.

5.4 Comparison of Experimental and Mathematical IFP.

5.5 Conclusions.

6. Reaction-Induced Phase Separation of Polymeric Systems under Stationary Nonequilibrium Conditions (Hideyuki Nakanishi, Daisuke Fujiki, Dan-Thuy Van-Pham, and Qui Tran-Cong-Miyata).

6.1 Introduction.

6.2 Overview of Theoretical Studies on Phase Separation Kinetics of Nonreactive and Reactive Binary Mixtures.

6.3 Chemical Reactions in Polymeric Systems: the Non-Mean-Field Kinetics.

6.4 Reaction-Induced Elastic Strain and Its Relaxation Behavior.

6.5 Phase Separation under Nonuniform Conditions in Polymeric Systems.

6.6 Conclusions.

7. Gels Coupled to Oscillatory Reactions (Ryo Yoshida).

7.1 Introduction.

7.2 Design of Self-Oscillating Gel.

7.3 Self-Oscillation Behaviors of the Gel.

7.4 Design of Biomimetic Micro-/Nanoactuator Using Self-Oscillating Polymer and Gel.

7.5 Conclusion.

8. Self-Oscillating Gels as Biomimetic Soft Materials (Olga Kuksenok, Victor V. Yashin, Pratyush Dayal, and Anna C. Balazs).

8.1 Introduction.

8.2 Methodology.

8.3 Sensitivity to Mechanical Deformation.

8.4 Sensitivity to Light.

8.5 Conclusions.

9. Chemoelastodynamics of Responsive Gels (Jacques Boissonade, Pierre Borckmans, Patrick De Kepper, and Stéphane Métens).

9.1 Introduction.

9.2 Elastodynamics of Responsive Gels: a Brief Syrvey.

9.3 Oscillatory Gel Dynamics Using an Oscillating Chemical Reaction.

9.4 Chemodynamic Oscillations Induced by Geometric Feedback.

9.5 Experimental Observations.

9.6 Conclusions.

10. Oscillatory Systems Created with Polymer Membranes (Ronald A. Siegel).

10.1 Introduction.

10.2 Survey of Synthetic Membrane Oscillators.

10.3 Hydrogel-Enzyme Oscillator for Rhythmic Hormone Delivery.

11. Structure Formation in Inorganic Precipitation Systems (Oliver Steinbock and Jason Pagano).

11.1 Introduction.

11.2 Permanent Patterns from Inorganic Precipitation and Deposition Processes.

11.3 Tube Formation in Precipitation Systems and Silica Gardens.

11.4 Historic and Cultural Links.

11.5 Some Recent Developments.

11.6 Experimental Methods.

11.7 Growth Regimes.

11.8 Wall Composition and Morphology.

11.9 Relaxation Oscillations.

11.10 Radius Selection.

11.11 Bubbles as Templates.

11.12 Toward Applications.

11.13 Outlook and Conclusions.

Index.

Finançat per UE