
Principles of Soil Dybamics
Das, Braja

Últimas novedades geología

PRINCIPLES OF SOIL DYNAMICS is an unparalleled reference book designed for an introductory course on Soil Dynamics. Authors Braja M. Das, best selling authority on Geotechnical Engineering, and Ramana V. Gunturi, Dean of the Civil Engineering Department at the India Institute of Technology in New Delhi, present a well revised update of this already well established text. The primary focus of the book is on the applications of soil dynamics and not on the underlying principles. The material covered includes the fundamentals of soil dynamics, dynamic soil properties, foundation vibration, soil liquefaction, pile foundation and slope stability.
Features
The most uptodate treatment of Soil Dynamics available in a textbook. Contains complete pedagogical apparatus including worked out examples, practical engineering applications, and extensive sets of homework problems that help students grasp the basic concept of soil dynamics. Provides good overall balance between the concepts of soil dynamics and their application within civil engineering. A complete chapter (Chapter 8) on lateral earth pressure on retaining walls gives students a thorough introduction to this important topic. Contains important, uptodate topics such as machine foundations on piles.

indíce 
. INTRODUCTION General. Nature and Type of Dynamic Loading on SoilS. Importance of Soil Dynamics. References. 2. FUNDAMENTALS OF VIBRATION Introduction. Fundamentals of Vibration. System with a Single Degree of Freedom. Free Vibration of a Spring Mass System. Forced Vibration of a SpringMass System. Free Vibration with Viscous Damping. Steady State Forced Vibration with Viscous Damping. Rotating Mass Type Excitation. Determination of Damping Ratio. Vibration Measuring Instrument. System with Two Degrees of Freedom. Vibration of a Mass Spring System. Coupled Translation and Rotation of a Mass Spring System (Free Vibration). Problems. References. 3. WAVES IN ELASTIC MEDIUM Introduction. Stress and Strain. Hooke’s Law. Elastic Stress Waves in a Bar. Longitudinal Elastic Waves in a Bar. Velocity of Particles in the Stressed Zone. Reflection of Elastic Stress Waves at the End of a Bar. Torsional Waves in a Bar. Longitudinal Vibration of Short Bars. Torsional Vibration of Short Bars. Stress Waves in an Infinite Elastic Medium. Equation of Motion in an Elastic Medium. Equations for Stress Waves. General Comments. Stress Waves in Elastic HalfSpace. Rayleigh Waves. Displacement of Rayleigh Waves. Attenuation of the Amplitude of Elastic Waves with Distance. References 4. PROPERTIES OF DYNAMICALLY LOADED SOILS Introduction. Laboratory Tests and Results. Shear Strength of Soils under Rapid Loading Conditions. Strength and Deformation Characteristics of Soils under Transient Load. Travel Time Test for Determination of Longitudinal and Shear Wave Velocities (vc and vs). Resonant Column Test. Cyclic Simple Shear Test. Cyclic Torsional Simple Shear Test. Cyclic Triaxial Test. Summary of Cyclic Tests. Field Test Measurements. Reflection and Refraction of Elastic Body Waves—Fundamental Concepts. Seismic Refraction Survey (Horizontal Layering). Refraction Survey in Soils with Inclined Layering. Reflection Survey in Soil (Horizontal Layering). Reflection Survey in Soil (Inclined Layering). Subsoil Exploration by SteadyState Vibration. Soil Exploration by "Shooting Up the Hole," "Shooting Down the Hole," and "CrossHole Shooting". Cyclic Plate Load Test. Correlations for Shear Modulus and Damping Ratio. Test Procedures for Measurement of Moduli and Damping Characteristics. Shear Modulus and Damping Ratio in Sand. Correlation of Gmax of Sand with Standard Penetration Resistance. Shear Modulus and Damping Ratio for Gravels. Shear Modulus and Damping Ratio for Clays. Shear Modulus and Damping Ratio for Lightly Cemented Sand. Problems. References. 5. FOUNDATION VIBRATION Introduction. Vertical Vibration of Circular Foundations on Elastic HalfSpace—Historical. Development. Analog Solution for Vertical Vibration of Foundations. Calculation Procedure for Foundation Response Vertical Vibration. Rocking Vibration of Foundations. Sliding Vibration of Foundations. Torsional Vibration of Foundations. Comparison of Footing Vibration Tests with Theory. Comments on the Mass Spring Dashpot Analog Used for Solving Foundation Vibration Problems. Coupled Rocking and Sliding Vibration of Rigid Circular Foundations. Vibration of Foundations for Impact Machines. Vibration of Embedded Foundations. Vertical Vibration of Rigid Circular Foundations. Sliding Vibration of Rigid Cylindrical Foundation. Rocking Vibration of Rigid Cylindrical Foundations. Torsional Vibration of Rigid Cylindrical Foundations Vibration Screening. Active and Passive Isolation: Definition. Active Isolation by Use of Open Trenches. Passive Isolation by Use of Open Trenches. Passive Isolation by Use of Piles. Problems. References. 6. DYNAMIC BEARING CAPACITY OF SHALLOW FOUNDATIONS Introduction. Ultimate Dynamic Bearing Capacity. Bearing Capacity in Sand. Bearing Capacity in Clay. Behavior of Foundations under Transient Loads. Experimental Observations of Load Settlement Relationship for Vertical Transient Loading. Seismic Bearing Capacity and Settlement in Granular Soil. Problems. References. 7. EARTHQUAKE AND GROUND VIBRATION Introduction. Definition of Some EarthquakeRelated Terms. Earthquake Magnitude. Characteristics of Rock Motion during an Earthquake. Vibration of Horizontal Soil Layers with Linearly Elastic Properties. Other Studies for Vibration of Soil Layers Due to Earthquakes. Equivalent Number of Significant Uniform Stress Cycles for Earthquakes. References. 8. LATERAL EARTH PRESSURE ON RETAINING WALLS Introduction. Mononobe Okabe Active Earth Pressure Theory. Some Comments on the Active Force Equation. Procedure for Obtaining PAE Using Standard Charts of KA. Effect of Various Parameters on the Value of the Active Earth Pressure Coefficient. Graphical Construction for Determination of Active Force, PAE. Laboratory Model Test Results for Active Earth Pressure Coefficient, KAE. Point of Application of the Resultant Active Force, PAE. Design of Gravity Retaining Walls Based on Limited Displacement. Hydrodynamic Effects of Pore Water. Mononobe Okabe Active Earth Pressure Theory for Backfill. Dynamic Passive Force on Retaining Wall. Problems. References 9. COMPRESSIBILITY OF SOILS UNDER DYNAMIC LOADS Introduction. Compaction of Granular Soils: Effect of Vertical Stress and Vertical Acceleration. Settlement of Strip Foundation on Granular Soil under the Effect of Controlled Cyclic Vertical Stress. Settlement of Machine Foundations on Granular Soils Subjected to Vertical Vibration. Settlement of Sand Due to Cyclic Shear Strain. Calculation of Settlement of Dry Sand Layers Subjected to Seismic Effect. Settlement of a Dry Sand Layer Due to Multidirectional Shaking. Problems. References. 10. LIQUEFACTION OF SOIL Introduction. Fundamental Concept of Liquefaction. Laboratory Studies to Simulate Field Conditions for Soil Liquefaction. Dynamic Triaxial Test. General Concepts and Test Procedures. Typical Results from Cyclic Triaxial Test. Influence of Various Parameters on Soil Liquefaction Potential. Development of Standard Curves for Initial Liquefaction. Cyclic Simple Shear Test. General Concepts. Typical Test Results. Rate of Excess Pore Water Pressure Increase. LargeScale Simple Shear Tests. Development of a Procedure for Determination of Field Liquefaction. Correlation of the Liquefaction Results from Simple Shear and Triaxial Tests. Correlation of the Liquefaction Results from Triaxial Tests to Field Conditions. Zone of Initial Liquefaction in the Field. Relation between Maximum Ground Acceleration and the Relative Density of Sand for Soil Liquefaction. Liquefaction Analysis from Standard Penetration Resistance. Other Correlations for Field Liquefaction Analysis. Remedial Action to Mitigate Liquefaction. Problems. References. 11. MACHINE FOUNDATIONS ON PILES Introduction. Piles Subjected to Vertical Vibration. EndBearing Piles. Friction Piles. Sliding, Rocking, and Torsional Vibration. Sliding and Rocking Vibration. Torsional Vibration of Embedded Piles. Problems. References. 12. SEISMIC STABILITY OF EARTH EMBANKMENTS Introduction. Free Vibration of Earth Embankments. Forced Vibration of an Earth Embankment. Velocity and Acceleration Spectra. Approximate Method for Evaluation of Maximum Crest. Acceleration and Natural Period of Embankments. Fundamental Concepts of Stability Analysis. Pseudostatic Analysis. Clay Slopes —Koppula’s Analysis. Slopes — Majumdar’s Analysis. Slopes—Prater’s Analysis. SlopesConventional Method of Slices. Simplified Procedure for Estimation of EarthquakeInduced Deformation. Problems. References Appendix A—Primary and Secondary Forces of SingleCylinder Engines Index
{NewFeatures} {Supplements} {Quotes} Braja M. Das Dr. Braja M. Das has been the Dean of the School of Engineering and Computer Science from August 1994 to the present at California State University, Sacramento. Prior to 1994, he was the Associate Vice President for Academic Affairs and Research at Southern Illinois University at Carbondale, Illinois. The author of more than 200 technical papers, his primary areas of research are shallow foundations, earth anchors, and geosynthetics. He received his Ph.D. from the University of Wisconsin, Madison.
G.V. Ramana


