CLIENTES - ACCESO PRIVADO    Suscribirse a nuestras novedades (RSS)        
 
BÚSQUEDA:        Buscar
Libros nacionales y extranjeros para bibliotecas,
 
 
Búsqueda avanzada
Libros nacionales y extranjeros para bibliotecas, escuelas, universidades, librerías
     
         
  Arte
Astronomía
Botánica
Ciencia y conocimiento
Ciencias aplicadas / tecnología
Ciencias biológicas
Ciencias sociales
Economía
Filosofía
Física
Generalidades
Geografía
Geología
Historia
Infantil / juvenil
Informática
Ingeniería
Lingüística / filología
Literatura
Matemáticas
Material complementario
Medicina
Ocio
Paleontología / fósiles
Química
Religión y teología
Zoología
   
   
 
   
Los Andes Libros s.l. + 34 935 00 39 13
C/ Andalusia, 3 Local 5 - 08014 Barcelona
 
Computational Spectroscopy: Methods, Experiments and Applications
Jörg Grunenberg (Editor)
Computational Spectroscopy: Methods, Experiments and Applications
ean9783527326495
temáticaQUÍMICA GENERAL
año Publicación2010
idiomaINGLÉS
editorialWILEY
formatoCARTONÉ


1512,50 €


   PEDIR
 
NOVEDAD
 
Últimas novedades
química general
Unique in its comprehensive coverage of not only theoretical methods but also applications in computational spectroscopy, this ready reference and handbook compiles the developments made over the last few years, from single molecule studies to the simulation of clusters and the solid state, from organic molecules to complex inorganic systems and from basic research to commercial applications in the area of environment relevance.


In so doing, it covers a multitude of apparatus-driven technologies, starting with the common and traditional spectroscopic methods, more recent developments (THz), as well as rather unusual methodologies and systems, such as the prediction of parity violation, rare gas HI complexes or theoretical spectroscopy of the transition state.


With its summarized results of so many different disciplines, this timely book will be of interest to newcomers to this hot topic while equally informing experts about developments in neighboring fields.
indíce
Preface.
List of Contributors.

1 Concepts in Computational Spectrometry: the Quantum and chemistry (J.F. Ogilvie).

1.1 Introduction.

1.2 Quantum Laws, or the Laws of Discreteness.

1.3 Quantum Theories of a Harmonic Oscillator.

1.4 Diatomic Molecule as Anharmonic Oscillator.

1.6 Conclusions.

2 Computational NMR Spectroscopy (Ibon Alkorta and Jóse Elguero).

2.1 Introduction.

2.2 NMR Properties.

2.3 Chemical Shifts.

2.4 NICS and Aromaticity.

2.5 Spin-Spin Coupling Constants.

2.6 Solvent Effects.

2.7 Conclusions.

2.8 The Problem of the Error in Theoretical Calculations of Chemical Shifts and Coupling Constants.

3 Calculation of Magnetic tensors and EPR Spectra for Free radicals in Different Environments (Paola Cimino, Frank Neese, and Vincenco Barone).

3.1 Introduction.

3.2 The General Model.

3.3 Spin Hamiltonian, g-Tensor, Hyperfine Coupling Constants, and Zero-Field Splitting.

3.4 Stereoelectronic, Environmental, and Dynamical Effects.

3.5 Line Shapes.

3.6 Concluding Remarks.

4 Generalization of the Badger Rule Based on the Use of Adiabatic Vibration Modes (Elfi Kraka, John Andreas Larsson, and Dieter Cremer).

4.1 Introduction.

4.2 Applicability of Badger-Type Relationships in the Case of Diatomic Molecules.

4.3 Dissection of a Polyatomic Molecule into a Collection of Quasi-Diatomic Molecules: Local Vibrational Modes.

4.4 Local Mode Properties Obtained From Experiment.

4.5 Badger-type Relationships for Polyatomic Molecules.

4.6 Conclusions.

5 The Simulation of UV-Vis Spectroscopy with Computational Methods (Benedetta Mennucci).

5.1 Introduction.

5.2 Quantum Mechanical Methods.

5.3 Modeling Solvent Effects.

5.4 Toward the Simulation of UV-Vis Spectra.

5.5 Some Numerical Examples.

5.6 Conclusions and Perspectives.

6 Nonadiabatic Calculation of Dipole Moments (Francisco M. Fernández and Julián Echave).

6.1 Introduction.

6.2 The Molecular Hamiltonian.

6.3 Symmetry.

6.4 The Hellmann-Feynman Theorem.

6.5 The Born-Oppenheimer Approximation.

6.6 Interaction between a Molecule and an external Field.

6.7 Experimental Measurements of Dipole Moments.

6.8 The Born-Oppenheimer Calculations of Dipole Moments.

6.9 Nonadiabatic Calculations of Dipole Moments.

6.10. Molecule-Fixed Coordinate System.

6.11 Perturbation Theory for the Stark Shift.

6.12 Conclusions.

7 The Search for Parity Violation in Chiral Molecules (Peter Schwerdtfeger).

7.1 Introduction.

7.2 Experimental Atempts.

7.3 Theoretical Predictions.

7.4 Conclusions.

8 Vibrational Circular Dichroism: time-Domain Approaches (Hanju Rhee, Seongeun Yang, and Minhaeng Cho).

8.1 Introduction.

8.2 Time-Correlation Function Theory.

8.3 Direct Time-Domain Calculation with QM/MM MD Simulation Methods.

8.4 Direct Time-Domain Measurement of VOA Free Induction Decay Field.

8.5 Summary and a Few Concluding Remarks.

9 Electronic Circular Dichroism (Lorenzo Di Bari and Gennaro Pescitelli).

9.1 Introduction.

9.2 Molecular Anatomy.

9.3 Conformatinal Manifolds and Molecular Strucutre.

9.4 Hybrid Approaches.

9.5 The QM Approach.

9.6 Conclusions and Perspectives.

10. Computational Dielectric Spectroscopy of Charged, Dipolar Systems (Christian Schroder and Othmar Steinhauser).

10.1 Methods.

10.2 Applications and Experiments.

10.3 Summary and Outlook.

11 Computational Spectroscopy in Environmental Chemistry (James D. Kubicki and Karl T. Mueller).

11.1 Introduction.

11.2 Methods.

11.3 Examples.

11.4 Summary and Future.

12 Comparison of Calcualted adn Observed Vibrational Frequencies of New Molecules from an experimental Perspective (Lester Andrews).

12.1 Introduction.

12.2 Experimental and Theoretical Methods.

12.3 Aluminum and Hydrogen: First Preparatino of Dibridged Dialane, A12H6.

12.4 Titanium and Boron Trifluoride Give the Borylene FB=TiF2 .

12.5 Ti and CH3F Form the Agostic Methylidene Product CH2=TiHF.

12.6 Zr and CH4 Form the Agostic Methylidene Product CH2=ZrH2.

12.7 Mo and CHC13 Form the Methylidyne CH=MoC13.

12.8 Tungsten and Hydrogen Produce the WH4(H2)4 Supercomplex.

12.9 Pt and CC14 Form the Carbene CC12=PtC12.

12.10 Th and CH4 Yield the Agostic Methylidene Product CH2=ThH2.

12.11 U and CHF3 Produce the Methylidyne CH=UF3.

13 Astronical Molecular Spectrsocpy (Timothy W. Schmidt).

13.1 The Giants’ Shoulders.

13.2 The First Spectroscopists and Seeds of Quantum Theory.

13.3 Small Molecules.

13.4 The Diffuse Interstellar Bands.

13.5 The Red Rectangle, HD44179.

13.6 The Aromatic Infrared Bands.

13.7 The Holy Grail.

Index.
Finançat per UE