Libros nacionales y extranjeros para bibliotecas, universidades, escuelas y librerías
27.126 libros en línea
x
[Expandir]ARTEARTE ARTE 
[Expandir]ASTRONOMÍAASTRONOMIA ASTRONOMÍA 
[Expandir]BOTÁNICABOTANICA BOTÁNICA 
[Expandir]CIENCIA Y CONOCIMIENTOCIENCIA Y CONOCIMIENTO CIENCIA Y CONOCIMIENTO 
[Expandir]CIENCIAS APLICADAS / TECNOLOGÍACIENCIAS APLICADAS / TECNOLOGIA CIENCIAS APLICADAS / TECNOLOGÍA 
[Expandir]CIENCIAS BIOLÓGICASCIENCIAS BIOLOGICAS CIENCIAS BIOLÓGICAS 
[Expandir]CIENCIAS SOCIALESCIENCIAS SOCIALES CIENCIAS SOCIALES 
[Expandir]ECONOMÍAECONOMIA ECONOMÍA 
[Expandir]FILOSOFÍAFILOSOFIA FILOSOFÍA 
[Expandir]FÍSICAFISICA FÍSICA 
[Expandir]GENERALIDADESGENERALIDADES GENERALIDADES 
[Expandir]GEOGRAFÍAGEOGRAFIA GEOGRAFÍA 
[Expandir]GEOLOGÍAGEOLOGIA GEOLOGÍA 
[Expandir]HISTORIAHISTORIA HISTORIA 
[Expandir]INFANTIL / JUVENILINFANTIL / JUVENIL INFANTIL / JUVENIL 
[Expandir]INFORMÁTICAINFORMATICA INFORMÁTICA 
[Expandir]INGENIERÍAINGENIERIA INGENIERÍA 
[Expandir]LINGÜÍSTICA / FILOLOGÍALINGUISTICA / FILOLOGIA LINGÜÍSTICA / FILOLOGÍA 
[Expandir]LITERATURALITERATURA LITERATURA 
[Expandir]MATEMÁTICASMATEMATICAS MATEMÁTICAS 
[Expandir]MATERIAL COMPLEMENTARIOMATERIAL COMPLEMENTARIO MATERIAL COMPLEMENTARIO 
[Expandir]MEDICINAMEDICINA MEDICINA 
[Expandir]OCIOOCIO OCIO 
[Expandir]PALEONTOLOGÍA / FÓSILESPALEONTOLOGIA / FOSILES PALEONTOLOGÍA / FÓSILES 
[Expandir]QUÍMICAQUIMICA QUÍMICA 
[Expandir]RELIGIÓN Y TEOLOGÍARELIGION Y TEOLOGIA RELIGIÓN Y TEOLOGÍA 
[Expandir]ZOOLOGÍAZOOLOGIA ZOOLOGÍA 

 

Añadido al carrito
Este artículo ya esta en el carrito
NOTES ON STATISTICS AND DATA QUALITY FOR ANALYTICAL CHEMISTS de Hjortsø, Martin, 9789812794154, QUÍMICA | INGENIERÍA, química general | ingeniería química, World Scientific, Inglés

NOTES ON STATISTICS AND DATA QUALITY FOR ANALYTICAL CHEMISTS

Hjortsø, Martin

EAN9789812794154

TématicaQuímica, Ingeniería

SubtématicaQuímica general, Ingeniería química

EditorialWorld Scientific

IdiomaInglés

FormatoCartoné   Año de publicación2010

Páginas524

 
Understanding the mathematical modeling of chemical processes is fundamental to the successful career of a researcher in chemical engineering. This book reviews, introduces, and develops the mathematics that is most frequently encountered in sophisticated chemical engineering models.

The result of a collaboration between a chemical engineer and a mathematician, both of whom have taught classes on modeling and applied mathematics, the book provides a rigorous and in-depth coverage of chemical engineering model formulation and analysis as well as a text which can serve as an excellent introduction to linear mathematics for engineering students. There is a clear focus in the choice of material, worked examples, and exercises that make it unusually accessible to the target audience. The book places a heavy emphasis on applications to motivate the theory, but simultaneously maintains a high standard of rigor to add mathematical depth and understanding.


Contents:
Model Formulation
Some Ordinary Differential Equations
Finite Dimensional Vector Spaces
Tensors
Linear Difference Equations
Linear Differential Equations
Hilbert Spaces
Partial Differential Equations
Problems


Readership: Graduate students, academics and researchers in chemical engineering.
LINEAR MATHEMATICAL MODELS IN CHEMICAL ENGINEERING
© World Scientific Publishing Co. Pte. Ltd.
http://www.worldscibooks.com/engineering/6774.html
Contents
Preface v
1. Model Formulation 1
1.1 Classical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1.1 Macroscopic balances . . . . . . . . . . . . . . . . . . . . . 2
1.1.1.1 Mass and energy balances . . . . . . . . . . . . . 2
1.1.1.2 Balances involving chemical kinetics . . . . . . . 18
1.1.2 The quasi steady state assumption . . . . . . . . . . . . . . 27
1.1.3 Di®erential balances . . . . . . . . . . . . . . . . . . . . . . 32
1.1.3.1 Coordinate systems . . . . . . . . . . . . . . . . . 32
1.1.3.2 Constitutive equations . . . . . . . . . . . . . . . 36
1.1.3.3 Operator notation . . . . . . . . . . . . . . . . . 38
1.1.3.4 Mass and energy balances . . . . . . . . . . . . . 42
1.1.3.5 Problems in °uid mechanics . . . . . . . . . . . . 59
1.1.3.6 Summary of common boundary conditions . . . . 64
1.1.3.7 Symmetry . . . . . . . . . . . . . . . . . . . . . . 66
1.2 Abstract control volumes . . . . . . . . . . . . . . . . . . . . . . . 69
2. Some Ordinary Di®erential Equations 79
2.1 First order equations . . . . . . . . . . . . . . . . . . . . . . . . . . 79
2.1.1 Separable equations . . . . . . . . . . . . . . . . . . . . . . 79
2.1.2 Linear, ¯rst order equations . . . . . . . . . . . . . . . . . 80
2.1.3 Exact equations . . . . . . . . . . . . . . . . . . . . . . . . 82
2.1.4 Homogeneous equations . . . . . . . . . . . . . . . . . . . . 83
2.1.5 Bernoulli equation . . . . . . . . . . . . . . . . . . . . . . . 85
2.1.6 Clairaut’s equation . . . . . . . . . . . . . . . . . . . . . . 86
2.1.7 Riccati equation . . . . . . . . . . . . . . . . . . . . . . . . 87
2.2 Second order equations . . . . . . . . . . . . . . . . . . . . . . . . . 89
2.2.1 Dependent variable does not occur explicitly . . . . . . . . 89
2.2.2 Free variable does not occur explicitly . . . . . . . . . . . . 90
xi
LINEAR MATHEMATICAL MODELS IN CHEMICAL ENGINEERING
© World Scientific Publishing Co. Pte. Ltd.
http://www.worldscibooks.com/engineering/6774.html
xii Linear Mathematical Models in Chemical Engineering
2.2.3 Homogeneous equations . . . . . . . . . . . . . . . . . . . . 91
2.3 Higher order equations . . . . . . . . . . . . . . . . . . . . . . . . . 92
2.4 Variable transformations . . . . . . . . . . . . . . . . . . . . . . . . 92
2.5 The importance of being Lipschitz . . . . . . . . . . . . . . . . . . 94
3. Finite Dimensional Vector Spaces 97
3.1 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
3.3 Span, linear independence, and basis . . . . . . . . . . . . . . . . . 101
3.3.1 Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . . 106
3.4 Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
3.4.1 Isomorphisms of vector spaces . . . . . . . . . . . . . . . . 107
3.4.2 Subspaces . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
3.4.3 Sums . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
3.4.4 Representation of subspaces . . . . . . . . . . . . . . . . . 113
3.5 Matrices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116
3.5.1 Matrix algebra . . . . . . . . . . . . . . . . . . . . . . . . . 117
3.5.2 Gauss elimination . . . . . . . . . . . . . . . . . . . . . . . 119
3.5.3 Determinants . . . . . . . . . . . . . . . . . . . . . . . . . 123
3.5.3.1 Basic properties of determinants . . . . . . . . . 124
3.5.3.2 Calculation of determinants . . . . . . . . . . . . 127
3.5.3.3 The derivative of a determinant . . . . . . . . . . 129
3.5.4 The classical adjoint matrix . . . . . . . . . . . . . . . . . 129
3.6 Systems of linear algebraic equations . . . . . . . . . . . . . . . . . 130
3.6.1 Rank . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131
3.6.2 Applications of rank . . . . . . . . . . . . . . . . . . . . . . 135
3.6.3 Solution structure . . . . . . . . . . . . . . . . . . . . . . . 141
3.6.4 The null and range space of a matrix . . . . . . . . . . . . 148
3.6.5 Overdetermined systems . . . . . . . . . . . . . . . . . . . 151
3.7 The algebraic eigenvalue problem . . . . . . . . . . . . . . . . . . . 152
3.7.1 Finding eigenvalues and eigenvectors . . . . . . . . . . . . 153
3.7.2 Multiplicity . . . . . . . . . . . . . . . . . . . . . . . . . . 160
3.7.3 Similar matrices . . . . . . . . . . . . . . . . . . . . . . . . 161
3.7.3.1 Equivalence relations . . . . . . . . . . . . . . . . 163
3.7.4 Eigenspaces and eigenbases . . . . . . . . . . . . . . . . . . 164
3.7.4.1 Diagonalization of simple and semi-simple
matrices . . . . . . . . . . . . . . . . . . . . . . . 166
3.7.5 Generalized eigenspaces . . . . . . . . . . . . . . . . . . . . 167
3.7.5.1 Generalized eigenbases . . . . . . . . . . . . . . . 171
3.7.6 Jordan canonical form . . . . . . . . . . . . . . . . . . . . . 175
3.7.7 Jordan form of real matrices with complex eigenvalues . . 179
3.7.8 Powers and exponentials of matrices . . . . . . . . . . . . . 183
LINEAR MATHEMATICAL MODELS IN CHEMICAL ENGINEERING
© World Scientific Publishing Co. Pte. Ltd.
http://www.worldscibooks.com/engineering/6774.html
Contents xiii
3.7.9 Location of eigenvalues . . . . . . . . . . . . . . . . . . . . 186
3.8 Geometry of vector spaces . . . . . . . . . . . . . . . . . . . . . . . 188
3.8.1 Vector products . . . . . . . . . . . . . . . . . . . . . . . . 188
3.8.1.1 Inner product . . . . . . . . . . . . . . . . . . . . 188
3.8.1.2 Cross product . . . . . . . . . . . . . . . . . . . . 190
3.8.1.3 Triple scalar product . . . . . . . . . . . . . . . . 191
3.8.1.4 Dyad or outer product . . . . . . . . . . . . . . . 193
3.8.2 Gram-Schmidt orthogonalization . . . . . . . . . . . . . . . 194
3.8.3 Eigenrows . . . . . . . . . . . . . . . . . . . . . . . . . . . 197
3.8.4 Real, symmetric matrices . . . . . . . . . . . . . . . . . . . 198
4. Tensors 201
4.1 De¯nitions and basic concepts . . . . . . . . . . . . . . . . . . . . . 202
4.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
4.2.1 Matrices as operators . . . . . . . . . . . . . . . . . . . . . 204
4.2.2 Equivalence transformations . . . . . . . . . . . . . . . . . 208
4.3 The adjoint operator . . . . . . . . . . . . . . . . . . . . . . . . . . 210
4.4 Tensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
4.4.1 Transformation rules . . . . . . . . . . . . . . . . . . . . . 214
4.4.2 Invariants of tensors . . . . . . . . . . . . . . . . . . . . . . 218
4.5 Some tensors from physics and engineering . . . . . . . . . . . . . 220
4.5.1 Fourier’s law . . . . . . . . . . . . . . . . . . . . . . . . . . 221
4.5.2 The stress tensor . . . . . . . . . . . . . . . . . . . . . . . 227
4.6 Vectors and tensors in curvilinear coordinates . . . . . . . . . . . . 235
4.6.1 Proper transformations . . . . . . . . . . . . . . . . . . . . 237
4.6.2 Vectors and transformations at a point . . . . . . . . . . . 238
4.6.3 Covariance and contravariance . . . . . . . . . . . . . . . . 240
4.6.4 The physical components . . . . . . . . . . . . . . . . . . . 246
5. Linear Di®erence Equations 249
5.1 Linear equations with constant coe±cients . . . . . . . . . . . . . . 259
5.1.1 Homogeneous solutions . . . . . . . . . . . . . . . . . . . . 260
5.1.2 Particular solutions . . . . . . . . . . . . . . . . . . . . . . 263
5.2 Single, ¯rst order equations . . . . . . . . . . . . . . . . . . . . . . 266
5.3 Single, higher order equations . . . . . . . . . . . . . . . . . . . . . 267
5.3.1 Solution by variable transformation . . . . . . . . . . . . . 268
5.3.1.1 Euler’s equation . . . . . . . . . . . . . . . . . . . 268
5.3.2 Reduction of order . . . . . . . . . . . . . . . . . . . . . . . 268
5.3.3 Particular solution by variation of parameters . . . . . . . 270
5.4 Systems of linear di®erence equations . . . . . . . . . . . . . . . . 272
5.4.1 Basic theorems . . . . . . . . . . . . . . . . . . . . . . . . . 273
5.4.2 Particular solution by variation of parameters . . . . . . . 275
LINEAR MATHEMATICAL MODELS IN CHEMICAL ENGINEERING
© World Scientific Publishing Co. Pte. Ltd.
http://www.worldscibooks.com/engineering/6774.html
xiv Linear Mathematical Models in Chemical Engineering
5.4.3 Equations with constant coe±cients . . . . . . . . . . . . . 277
5.4.3.1 Homogeneous solutions . . . . . . . . . . . . . . . 277
5.4.3.2 Particular solutions for constant inhomogeneous
term . . . . . . . . . . . . . . . . . . . . . . . . . 282
5.5 Non linear equations . . . . . . . . . . . . . . . . . . . . . . . . . . 285
5.5.1 Riccati’s equation . . . . . . . . . . . . . . . . . . . . . . . 286
6. Linear Di®erential Equations 287
6.1 Linear equations with constant coe±cients . . . . . . . . . . . . . . 288
6.1.1 Homogeneous solutions . . . . . . . . . . . . . . . . . . . . 288
6.1.2 Particular solutions . . . . . . . . . . . . . . . . . . . . . . 290
6.2 Single, higher order equations . . . . . . . . . . . . . . . . . . . . . 293
6.2.1 Solution by variable transformation . . . . . . . . . . . . . 294
6.2.1.1 Euler’s equation . . . . . . . . . . . . . . . . . . . 294
6.2.2 Reduction of order . . . . . . . . . . . . . . . . . . . . . . . 295
6.2.3 Particular solution by variation of parameters . . . . . . . 296
6.3 Systems of linear di®erential equations . . . . . . . . . . . . . . . . 299
6.3.1 Basic theorems . . . . . . . . . . . . . . . . . . . . . . . . . 300
6.3.2 Particular solution by variation of parameters . . . . . . . 301
6.3.3 Equations with constant coe±cients . . . . . . . . . . . . . 302
6.3.3.1 Homogeneous solutions . . . . . . . . . . . . . . . 303
6.3.3.2 Particular solutions for constant inhomogeneous
term . . . . . . . . . . . . . . . . . . . . . . . . . 307
6.3.3.3 Dealing with complex eigenvalues . . . . . . . . . 310
6.3.3.4 Classi¯cation of steady states . . . . . . . . . . . 311
6.3.3.5 Stability of nonlinear ODEs . . . . . . . . . . . . 319
6.4 Series solutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325
6.5 Some common functions de¯ned by ODEs . . . . . . . . . . . . . . 333
6.5.1 Exponential and trigonometric functions . . . . . . . . . . 333
6.5.2 Bessel functions . . . . . . . . . . . . . . . . . . . . . . . . 334
6.5.3 Legendre functions . . . . . . . . . . . . . . . . . . . . . . 340
7. Hilbert Spaces 345
7.1 In¯nite dimensional vector spaces . . . . . . . . . . . . . . . . . . . 346
7.1.1 Countable and uncountable in¯nities . . . . . . . . . . . . 346
7.1.2 Normed spaces . . . . . . . . . . . . . . . . . . . . . . . . . 348
7.1.3 Bases in in¯nite dimensional spaces . . . . . . . . . . . . . 351
7.1.4 The function spaces Lp[0; 1] . . . . . . . . . . . . . . . . . 353
7.2 Hilbert spaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 354
7.2.1 Inner products . . . . . . . . . . . . . . . . . . . . . . . . . 354
7.2.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356
7.2.3 Orthogonality . . . . . . . . . . . . . . . . . . . . . . . . . 357
LINEAR MATHEMATICAL MODELS IN CHEMICAL ENGINEERING
© World Scientific Publishing Co. Pte. Ltd.
http://www.worldscibooks.com/engineering/6774.html
Contents xv
7.2.4 Orthogonal projections . . . . . . . . . . . . . . . . . . . . 361
7.2.5 Orthogonal complements . . . . . . . . . . . . . . . . . . . 363
7.3 Linear operators in Hilbert spaces . . . . . . . . . . . . . . . . . . 363
7.3.1 The adjoint operator . . . . . . . . . . . . . . . . . . . . . 364
7.3.2 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . 365
7.3.3 Sturm-Liouville operators . . . . . . . . . . . . . . . . . . . 367
7.4 Eigenvalue problems . . . . . . . . . . . . . . . . . . . . . . . . . . 368
7.4.1 Sturm-Liouville Problems . . . . . . . . . . . . . . . . . . . 372
7.4.2 Conversion of linear equations to SLP . . . . . . . . . . . . 376
7.5 Fourier series . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
7.5.1 Fourier sine series . . . . . . . . . . . . . . . . . . . . . . . 377
7.5.2 Fourier cosine series . . . . . . . . . . . . . . . . . . . . . . 378
7.5.3 Complete Fourier series . . . . . . . . . . . . . . . . . . . . 378
7.5.4 Gibb’s phenomena . . . . . . . . . . . . . . . . . . . . . . . 381
7.5.5 Generalized Fourier series . . . . . . . . . . . . . . . . . . . 383
8. Partial Di®erential Equations 389
8.1 Fourier series methods . . . . . . . . . . . . . . . . . . . . . . . . . 389
8.1.1 Classi¯cation of second order PDEs . . . . . . . . . . . . . 390
8.1.2 Inner product method . . . . . . . . . . . . . . . . . . . . . 392
8.1.3 PDEs with Sturm-Liouville operators . . . . . . . . . . . . 396
8.1.3.1 Homogeneous problem . . . . . . . . . . . . . . . 397
8.1.3.2 Homogeneous problem with transcendental
equation for eigenvalues . . . . . . . . . . . . . . 399
8.1.3.3 Inhomogeneous PDE . . . . . . . . . . . . . . . . 409
8.1.3.4 Inhomogeneous, time varying boundary
conditions . . . . . . . . . . . . . . . . . . . . . . 411
8.1.4 Other self-adjoint PDEs . . . . . . . . . . . . . . . . . . . . 415
8.2 Finite Fourier transform . . . . . . . . . . . . . . . . . . . . . . . . 425
8.3 First order PDEs . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
8.4 First order PDE and Cauchy’s method . . . . . . . . . . . . . . . . 432
8.4.1 Cauchy’s method for linear equations . . . . . . . . . . . . 434
8.5 Similarity transformation . . . . . . . . . . . . . . . . . . . . . . . 448
9. Problems 455
Appendix 497
A.1 Complex numbers . . . . . . . . . . . . . . . . . . . . . . . . . . . 497
Index 501

PVP:  89,54 €

Libros similares

Mi Carrito

0 libros - Total: 0 €